一、基础概述
机器学习(Machine Learing)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
机器学习专门研究计算机怎样模拟或实现人类的学习行为,以便获取新的知识和技能,重新组织已有的知识结构使之不断改善自身的性能。
机器学习是人工智能的核心,是计算机具有智能的根本途径,其应用遍及人工智能的各个领域。
机器学习使用归纳、综合而不是演绎。
二、算法分类
按照学习方式
监督学习

半监督学习

无监督学习

强化学习

按照算法相似性
回归算法

聚类算法

降维算法

深度学习

集成算法

正则化算法

决策树算法

贝叶斯算法

关联规则学习

人工神经网络

基于核的算法

基于实例的算法

三、研究内容
机器学习领域的研究工作主要围绕以下三个方面
面向任务的研究,研究和分析改进一组预定任务的执行性能的学习系统。
认知模型,研究人类学习过程并进行计算机的模拟。
理论分析,从理论上探索各种可能的学习方法和独立于应用领域的算法。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

评论(0)