R语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是ggplot2包里面的geom_bar
此处用的是字符变量 统计其各频数,然后做出其柱状图。(横轴上的标签显示不全)
t <- sort(table(dat1$L), decreasing = TRUE)                      #将频数表进行排序
r <- barplot(t, col = "blue",
       main = "柱状图", ylim = c(0,12), names.arg = dimnames(t)     #画字符变量的柱状图 
tmp <- as.vector(t)                                           #将频数变成一个向量
text(r, tmp, label = tmp, pos = 3)                                #加柱子上面的标签
或用ggplot2包 (目前仍没有给柱子上加数字标签)
library(ggplot2)                                         #加载ggplot2包                      
reorder_size <- function(x) {
 factor(x, levels = names(sort(table(x))))
}                                                     #自定义函数,获取因子型变量的因子类型
p <- ggplot(dat3, aes(reorder_size(LAI))) +                   #用因子变量做基础底图,也可直接用reorder排序
 geom_bar(fill = "blue") +                                        #画柱状图
 theme(axis.text.x = element_text(angle = 45, hjust = 0.5, vjust = 0.5)) +   #让横轴上的标签倾斜45度
 xlab("柱状图")                                                #给x轴加标签
补充:R 语言条形图,解决x轴文字排序问题
数据结果的图形展示,R代码,《R数据科学》是个好东西
数据格式如下:
| term | category | pval | 
| neutrophil chemotaxis | biological_process | 1.68E-09 | 
| innate immune response | biological_process | 3.35E-09 | 
| complement activation, classical pathway | biological_process | 1.14E-08 | 
| negative regulation of endopeptidase activity | biological_process | 4.43E-08 | 
| collagen fibril organization | biological_process | 4.43E-08 | 
| blood coagulation | biological_process | 1.29E-07 | 
| proteolysis involved in cellular protein catabolic process | biological_process | 1.56E-07 | 
| proteolysis | biological_process | 1.13E-06 | 
| leukocyte migration involved in inflammatory response | biological_process | 1.47E-06 | 
| peptide cross-linking | biological_process | 1.47E-06 | 
| extracellular space | cellular_component | 8.75E-40 | 
| collagen-containing extracellular matrix | cellular_component | 2.08E-26 | 
| extracellular matrix | cellular_component | 5.72E-11 | 
| lysosome | cellular_component | 6.09E-10 | 
| extracellular region | cellular_component | 6.58E-10 | 
| collagen trimer | cellular_component | 1.68E-09 | 
| cell surface | cellular_component | 2.80E-08 | 
| extracellular exosome | cellular_component | 2.34E-07 | 
| extrinsic component of external side of plasma membrane | cellular_component | 1.47E-06 | 
| sarcolemma | cellular_component | 3.16E-06 | 
作图要求:x轴为term,颜色按categroy分类、并且pval由小到大排序
代码:
#openxlsx读入为data.frame class(data) #转换 library(tidyverse) godata<-as_tibble(godata) class(godata) #原始数据筛选(category,term,pval)散列,按照category,-log10(pval)排序 data<-godata%>%select(category,term,pval)%>%arrange(category,desc(-log10(pval))) #画图时改变geom_bar的自动排序 data$term<-factor(data$term,levels = unique(data$term),ordered = T) #作图 ggplot(data)+ geom_bar(aes(x=term,y=-log10(pval),fill=category),stat = 'identity')+ coord_flip()
结果:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
	声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
		
评论(0)