目录
  • 1.Airbus Ship Detection Challenge
  • 2.数据展示
    • 2.1 标注数据
    • 2.2 图象文件
  • 3.格式转换
    • 4.转换结果

      1.Airbus Ship Detection Challenge

      url: https://www.kaggle.com/competitions/airbus-ship-detection

      Find ships on satellite images as quickly as possible

      Data Description

      In this competition, you are required to locate ships in images, and put an aligned bounding box segment around the ships you locate. Many images do not contain ships, and those that do may contain multiple ships. Ships within and across images may differ in size (sometimes significantly) and be located in open sea, at docks, marinas, etc.

      For this metric, object segments cannot overlap. There were a small percentage of images in both the Train and Test set that had slight overlap of object segments when ships were directly next to each other. Any segments overlaps were removed by setting them to background (i.e., non-ship) encoding. Therefore, some images have a ground truth may be an aligned bounding box with some pixels removed from an edge of the segment. These small adjustments will have a minimal impact on scoring, since the scoring evaluates over increasing overlap thresholds.

      The train_ship_segmentations.csv file provides the ground truth (in run-length encoding format) for the training images. The sample_submission files contains the images in the test images.

      Please click on each file / folder in the Data Sources section to get more information about the files.

      kaggle competitions download -c airbus-ship-detection
      

      2.数据展示

      2.1 标注数据

      该数据以csv格式存储,具体如下:

      基于Python实现RLE格式分割标注文件的格式转换

      2.2 图象文件

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      3.格式转换

      由于图太多,暂时转换10个

      #!/usr/bin/env python3
      # -*- coding: utf-8 -*-
      
      import numpy as np  # linear algebra
      import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)
      from PIL import Image
      
      
      # ref: https://www.kaggle.com/paulorzp/run-length-encode-and-decode
      # 将图片编码成rle格式
      def rle_encode(img, min_max_threshold=1e-3, max_mean_threshold=None):
          '''
          img: numpy array, 1 - mask, 0 - background
          Returns run length as string formated
          '''
          if np.max(img) < min_max_threshold:
              return ''  ## no need to encode if it's all zeros
          if max_mean_threshold and np.mean(img) > max_mean_threshold:
              return ''  ## ignore overfilled mask
          pixels = img.T.flatten()
          pixels = np.concatenate([[0], pixels, [0]])
          runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
          runs[1::2] -= runs[::2]
          return ' '.join(str(x) for x in runs)
      
      
      # 将图片从rle解码
      def rle_decode(mask_rle, shape=(768, 768)):
          '''
          mask_rle: run-length as string formated (start length)
          shape: (height,width) of array to return
          Returns numpy array, 1 - mask, 0 - background
          '''
          s = mask_rle.split()
          starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
          starts -= 1
          ends = starts + lengths
          img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
          for lo, hi in zip(starts, ends):
              # img[lo:hi] = 1
              img[lo:hi] = 255 #方便可视化
          return img.reshape(shape).T  # Needed to align to RLE direction
      
      
      def masks_as_image(in_mask_list):
          # Take the individual ship masks and create a single mask array for all ships
          all_masks = np.zeros((768, 768), dtype=np.uint8)
          for mask in in_mask_list:
              if isinstance(mask, str):
                  all_masks |= rle_decode(mask)
          return all_masks
      
      
      # 将目标路径下的rle文件中所包含的所有rle编码,保存到save_img_dir中去
      def rle_2_img(train_rle_dir, save_img_dir):
          masks = pd.read_csv(train_rle_dir)
          not_empty = pd.notna(masks.EncodedPixels)
          print(not_empty.sum(), 'masks in', masks[not_empty].ImageId.nunique(), 'images')
          print((~not_empty).sum(), 'empty images in', masks.ImageId.nunique(), 'total images')
          all_batchs = list(masks.groupby('ImageId'))
          train_images = []
          train_masks = []
          i = 0
          for img_id, mask in all_batchs[:10]:
              c_mask = masks_as_image(mask['EncodedPixels'].values)
              im = Image.fromarray(c_mask)
              im.save(save_img_dir + img_id.split('.')[0] + '.png')
              print(i, img_id.split('.')[0] + '.png')
              i += 1
      
          return train_images, train_masks
      
      
      if __name__ == '__main__':
          rle_2_img('train_ship_segmentations_v2.csv',
                    'mask/')

      其中为了方便查看,原计划0为背景,1为mask,为了方便显示,设置为255为mask。

      4.转换结果

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      基于Python实现RLE格式分割标注文件的格式转换

      声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。