创建测试数据:

import pandas as pd
import numpy as np
 
#Create a DataFrame
df1 = {
  'Subject':['semester1','semester2','semester3','semester4','semester1',
        'semester2','semester3'],
  'Score':[62,47,55,74,31,77,85]}
 
df2 = {
  'Subject':['semester1','semester2','semester3','semester4'],
  'Score':[90,47,85,74]}
 
 
df1 = pd.DataFrame(df1,columns=['Subject','Score'])
df2 = pd.DataFrame(df2,columns=['Subject','Score'])
 
print(df1)
print(df2)

运行结果:

Pandas中两个dataframe的交集和差集的示例代码

求两个dataframe的交集

intersected_df = pd.merge(df1, df2, how='inner')
print(intersected_df)

Pandas中两个dataframe的交集和差集的示例代码

也可以指定求交集的列:

intersected_df = pd.merge(df1, df2, on=['Subject'], how='inner')
print(intersected_df)

Pandas中两个dataframe的交集和差集的示例代码

求差集

df2-df1:

set_diff_df = pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
print(set_diff_df)

Pandas中两个dataframe的交集和差集的示例代码

df1-df2:

set_diff_df = pd.concat([df1, df2, df2]).drop_duplicates(keep=False)
print(set_diff_df)

Pandas中两个dataframe的交集和差集的示例代码

另一种求差集的方法是:

以df1-df2为例:

df1 = df1.append(df2)
df1 = df1.append(df2)
set_diff_df = df1.drop_duplicates(subset=['Subject', 'Score'],keep=False)
print(set_diff_df)

得到的df1-df2结果是一样的:

Pandas中两个dataframe的交集和差集的示例代码

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。