1. n阶差商实现
def diff(xi,yi,n):
"""
param xi:插值节点xi
param yi:插值节点yi
param n: 求几阶差商
return: n阶差商
"""
if len(xi) != len(yi): #xi和yi必须保证长度一致
return
else:
diff_quot = [[] for i in range(n)]
for j in range(1,n+1):
if j == 1:
for i in range(n+1-j):
diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1]))
else:
for i in range(n+1-j):
diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j]))
return diff_quot
测试一下:
xi = [1.615,1.634,1.702,1.828] yi = [2.41450,2.46259,2.65271,3.03035] n = 3 print(diff(xi,yi,n))
返回的差商结果为:
[[2.53105263157897, 2.7958823529411716, 2.997142857142854], [3.0440197857724347, 1.0374252793901158], [-9.420631485362996]]
2. 牛顿插值实现
def Newton(x):
f = yi[0]
v = []
r = 1
for i in range(n):
r *= (x - xi[i])
v.append(r)
f += diff_quot[i][0] * v[i]
return f
测试一下:
x = 1.682 print(Newton(x))
结果为:
2.5944760289639732
3.完整Python代码
def Newton(xi,yi,n,x):
"""
param xi:插值节点xi
param yi:插值节点yi
param n: 求几阶差商
param x: 代求近似值
return: n阶差商
"""
if len(xi) != len(yi): #xi和yi必须保证长度一致
return
else:
diff_quot = [[] for i in range(n)]
for j in range(1,n+1):
if j == 1:
for i in range(n+1-j):
diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1]))
else:
for i in range(n+1-j):
diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j]))
print(diff_quot)
f = yi[0]
v = []
r = 1
for i in range(n):
r *= (x - xi[i])
v.append(r)
f += diff_quot[i][0] * v[i]
return f
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

评论(0)