1、线程池模块
引入
from concurrent.futures import ThreadPoolExecutor
2、使用线程池
一个简单的线程池使用案例
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun():
    time.sleep(1)
    print(1, end='')
if __name__ == '__main__':
    # 列表推导式
    [pool.submit(fun) for i in range(20) if True]
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun(arg1,arg2):
    time.sleep(1)
    print(arg1, end=' ')
    print(arg2, end=' ')
if __name__ == '__main__':
    # 列表推导式
    [pool.submit(fun,i,i) for i in range(20) if True]
    # 单个线程的执行
    task = pool.submit(fun,'Hello','world')
    # 判断任务执行状态
    print(f'task status {task.done()}')
    time.sleep(4)
    print(f'task status {task.done()}')
    # 获取结果的函数是阻塞的,所以他会等线程结束之后才会输出
    print(task.result())
3、获取结果
阻塞等待
print(task.result())
批量获取结果
for future in as_completed(all_task):
    data = future.result()
阻塞主线程,等待执行结束再执行下一个业务
# 等待线程全部执行完毕
wait(pool.submit(fun,1,2),return_when=ALL_COMPLETED)
print('')
以上就是Python 线程池模块之多线程操作代码的详细内容,更多关于Python 线程池模块的资料请关注其它相关文章!
	声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
		
评论(0)