大家还是直接看代码吧~
netG = Generator() print('# generator parameters:', sum(param.numel() for param in netG.parameters())) netD = Discriminator() print('# discriminator parameters:', sum(param.numel() for param in netD.parameters()))
补充:PyTorch查看网络模型的参数量PARAMS和FLOPS等
在PyTorch中,可以使用torchstat这个库来查看网络模型的一些信息,包括总的参数量params、MAdd、显卡内存占用量和FLOPs等。
示例代码如下:
from torchstat import stat from torchvision.models import resnet50, resnet101, resnet152, resnext101_32x8d model = resnet50() stat(model, (3, 224, 224))
打印信息如下:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)