目录
前言 一、经过统计得到多维度指标数据二、使用unstack实现数据的二维透视三、使用pivot简化透视四、stack、unstack、pivot的语法1.stack2.unstack3.pivot总结
前言
笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中使用stack和pivot实现数据透视。

一、经过统计得到多维度指标数据
非常场景的统计场景,指定多个维度,计算聚合后的指标
实例:统计得到“电影评分数据集”,每个月份的每个分数被评分多少次:(月份、分数1-5、次数)
import pandas as pd
import numpy as np
%matplotlib inline
df=pd.read_csv(
"./datas/ml-1m/ratings.dat",
sep="::",
engine='python',
names='UserID::MovieID::Rating::Timestamp'.split("::"),
header=None
)
df.head()
#将时间戳转换为具体的时间
df['padate']=pd.to_datetime(df["Timestamp"],unit='s')
df.head()
df.dtypes
#实现数据统计
# 对于这样格式的数据,我想查看按月份,不同评分的次数趋势,是没有办法进行实现的,需要将数据转换为每个评分是一列才可以实现。
df_group=df.groupby([df["padate"].dt.month,"Rating"])["UserID"].agg(pv=np.sum)
df_group.head(20)

二、使用unstack实现数据的二维透视
目的: 想要画图对比按照月份的不同评分的数量趋势
df_stack=df_group.unstack() df_stack df_stack.plot() #unstack和stack是互逆的操作 df_stack.stack().head(20)


三、使用pivot简化透视
pivot方法相当于对df使用set_index创建分层索引,然后调用unstack
df_group.head(20)
df_reset=df_group.reset_index()
df_reset.head()
df_pivot=df_reset.pivot("padate","Rating","pv")
df_pivot.head()
df_pivot.plot()

四、stack、unstack、pivot的语法
1.stack
stack:DataFrame.stack(level=-1,dropna=True),将column变成index,类似把横放的书籍变成竖放
level=-1代表多层索引的最内层,可以通过==0,1,2指定多层索引的对应层

2.unstack
unstack:DataFrame.unstack(level=-1,fill_value=None),将index变成column,类似把竖放的书变成横放

3.pivot
pivot:DataFrame.pivot(index=None,columns=None,values=None),指定index,columns,values实现二维透视

总结
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

评论(0)