1.网络模型转移到CUDA上

net = AlexNet()
net.cuda()#转移到CUDA上

2.将loss转移到CUDA上

criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()

这一步不做也可以,因为loss是根据out、label算出来的

loss = criterion(out, label)

只要out、label在CUDA上,loss自然也在CUDA上了,但是发现不转移到CUDA上准确率竟然降低了1%

3.将数据集转移到CUDA上

这里要解释一下数据集使用方法

#download the dataset
train_set = CIFAR10("./data_cifar10", train=True, transform=data_tf, download=True)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

dataset是把所有的input,label都制作成了一个大的多维数组

dataloader是在这个大的多维数组里采样制作成batch,用这些batch来训练

    for im, label in train_data:
        i = i + 1
        im = im.cuda()#把数据迁移到CUDA上
        im = Variable(im)#把数据放到Variable里
        label = label.cuda()
        label =Variable(label)
        out = net(im)#the output should have the size of (N,10)

遍历batch的时候,首先要把拿出来的Image、label都转移到CUDA上,这样接下来的计算都是在CUDA上了

开始的时候只在转成Variable以后才迁移到CUDA上,这样在网络传播过程中就数据不是在CUDA上了,所以一直报错

训练网络时指定gpu显卡

查看有哪些可用的gpu

nvidia -smi

实时查看gpu信息1代表每1秒刷新一次

watch -n -1 nvidia -smi

指定使用的gpu

import os
# 使用第一张与第三张GPU卡
os.environ["CUDA_VISIBLE_DEVICES"] = "0,3"

以上为个人经验,希望能给大家一个参考,也希望大家多多支持免费资源网。

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。