Pandas 按周、月、年、统计数据
介绍
将日期转为时间格式 并设置为索引
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) print(data) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data)
按周、月、季度、年统计数据
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum()) print(data.resample('m').sum()) print(data.resample('Q').sum()) print(data.resample('AS').sum())
使用to_period()方法 优化
按月、季度和年显示数据(不统计数据)
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum().to_period('w')) print(data.resample('m').sum().to_period('m')) print(data.resample('q').sum().to_period('q')) print(data.resample('as').sum().to_period('a'))
与之前相比 日期的显示方式发生了改变
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)