目录
  • 1. 导入包
  • 2. 获得数据
  • 3. 对数据做一些预处理
  • 4. 画图
    • 4.1 优化:添加点
    • 4.2 优化:设置刻度
    • 4.3 优化:设置填充
    • 4.4 优化:设置填充颜色
  • 5. 把功能打包成函数
    • 6.测试函数
      • 最后

        大家好,今天分享一个非常有趣的 Python 教程,如何美化一个 matplotlib 折线图,喜欢记得收藏、关注、点赞。

        1. 导入包

        import pandas as pd
        import matplotlib.pyplot as plt
        import matplotlib.ticker as ticker
        import matplotlib.gridspec as gridspec
        

        2. 获得数据

        file_id = '1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB'
        url = f'https://drive.google.com/uc?id={file_id}'
        df = pd.read_csv(url, index_col=0)
        df
        

        数据长得是这样的:

        Python+matplotlib实现折线图的美化

        3. 对数据做一些预处理

        按照需要,对数据再做一些预处理,代码及效果如下:

        home_df = df.copy()
        home_df = home_df.melt(id_vars = ["date", "home_team_name", "away_team_name"])
        home_df["venue"] = "H"
        home_df.rename(columns = {"home_team_name":"team", "away_team_name":"opponent"}, inplace = True)
        home_df.replace({"variable":{"home_team_xG":"xG_for", "away_team_xG":"xG_ag"}}, inplace = True)
        
        away_df = df.copy()
        away_df = away_df.melt(id_vars = ["date", "away_team_name", "home_team_name"])
        away_df["venue"] = "A"
        away_df.rename(columns = {"away_team_name":"team", "home_team_name":"opponent"}, inplace = True)
        away_df.replace({"variable":{"away_team_xG":"xG_for", "home_team_xG":"xG_ag"}}, inplace = True)
        
        df = pd.concat([home_df, away_df]).reset_index(drop = True)
        df
        

        Python+matplotlib实现折线图的美化

        4. 画图

        # ---- Filter the data
        
        Y_for = df[(df["team"] == "Lazio") & (df["variable"] == "xG_for")]["value"].reset_index(drop = True)
        Y_ag = df[(df["team"] == "Lazio") & (df["variable"] == "xG_ag")]["value"].reset_index(drop = True)
        X_ = pd.Series(range(len(Y_for)))
        
        # ---- Compute rolling average
        
        Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg.
        Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()
        
        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        ax.plot(X_, Y_for)
        ax.plot(X_, Y_ag)
        

        Python+matplotlib实现折线图的美化

        使用matplotlib倒是可以快速把图画好了,但是太丑了。接下来进行优化。

        4.1 优化:添加点

        这里为每一个数据添加点

        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        # --- Remove spines and add gridlines
        
        ax.spines["left"].set_visible(False)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        
        ax.grid(ls = "--", lw = 0.5, color = "#4E616C")
        
        # --- The data
        
        ax.plot(X_, Y_for, marker = "o")
        ax.plot(X_, Y_ag, marker = "o")
        

        Python+matplotlib实现折线图的美化

        4.2 优化:设置刻度

        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        # --- Remove spines and add gridlines
        
        ax.spines["left"].set_visible(False)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        
        ax.grid(ls = "--", lw = 0.25, color = "#4E616C")
        
        # --- The data
        
        ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)
        ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)
        
        # --- Adjust tickers and spine to match the style of our grid
        
        ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays
        xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])
        # This last line outputs
        # [-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]
        # and we mark the tickers every two positions.
        
        ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        
        ax.spines["bottom"].set_edgecolor("#4E616C")
        

        Python+matplotlib实现折线图的美化

        4.3 优化:设置填充

        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        # --- Remove spines and add gridlines
        
        ax.spines["left"].set_visible(False)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        
        ax.grid(ls = "--", lw = 0.25, color = "#4E616C")
        
        # --- The data
        
        ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)
        ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)
        
        # --- Fill between
        
        ax.fill_between(x = X_, y1 = Y_for, y2 = Y_ag, alpha = 0.5)
        
        # --- Adjust tickers and spine to match the style of our grid
        
        ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays
        xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])
        
        ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        
        ax.spines["bottom"].set_edgecolor("#4E616C")
        

        Python+matplotlib实现折线图的美化

        4.4 优化:设置填充颜色

        1.当橙色线更高时,希望填充为橙色。但是上面的还无法满足,这里再优化一下.

        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        # --- Remove spines and add gridlines
        
        ax.spines["left"].set_visible(False)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        
        ax.grid(ls = "--", lw = 0.25, color = "#4E616C")
        
        # --- The data
        
        ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)
        ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)
        
        # --- Fill between
        
        # Identify points where Y_for > Y_ag
        
        pos_for = (Y_for > Y_ag)
        ax.fill_between(x = X_[pos_for], y1 = Y_for[pos_for], y2 = Y_ag[pos_for], alpha = 0.5)
        
        pos_ag = (Y_for <= Y_ag)
        ax.fill_between(x = X_[pos_ag], y1 = Y_for[pos_ag], y2 = Y_ag[pos_ag], alpha = 0.5)
        
        # --- Adjust tickers and spine to match the style of our grid
        
        ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays
        xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])
        
        ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        
        ax.spines["bottom"].set_edgecolor("#4E616C")
        

        Python+matplotlib实现折线图的美化

        上面的图出现异常,再修改一下:

        X_aux = X_.copy()
        X_aux.index = X_aux.index * 10 # 9 aux points in between each match
        last_idx = X_aux.index[-1] + 1
        X_aux = X_aux.reindex(range(last_idx))
        X_aux = X_aux.interpolate()
        
        
        # --- Aux series for the xG created (Y_for)
        Y_for_aux = Y_for.copy()
        Y_for_aux.index = Y_for_aux.index * 10
        last_idx = Y_for_aux.index[-1] + 1
        Y_for_aux = Y_for_aux.reindex(range(last_idx))
        Y_for_aux = Y_for_aux.interpolate()
        
        # --- Aux series for the xG conceded (Y_ag)
        Y_ag_aux = Y_ag.copy()
        Y_ag_aux.index = Y_ag_aux.index * 10
        last_idx = Y_ag_aux.index[-1] + 1
        Y_ag_aux = Y_ag_aux.reindex(range(last_idx))
        Y_ag_aux = Y_ag_aux.interpolate()
        
        
        
        fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
        
        # --- Remove spines and add gridlines
        
        ax.spines["left"].set_visible(False)
        ax.spines["top"].set_visible(False)
        ax.spines["right"].set_visible(False)
        
        ax.grid(ls = "--", lw = 0.25, color = "#4E616C")
        
        # --- The data
        
        for_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)
        ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)
        
        # --- Fill between
        
        for index in range(len(X_aux) - 1):
            # Choose color based on which line's on top
            if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]:
                color = for_[0].get_color()
            else:
                color = ag_[0].get_color()
            
            # Fill between the current point and the next point in pur extended series.
            ax.fill_between([X_aux[index], X_aux[index+1]], 
                            [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], 
                            [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], 
                            color=color, zorder = 2, alpha = 0.2, ec = None)
        
        # --- Adjust tickers and spine to match the style of our grid
        
        ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays
        xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])
        
        ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        
        ax.spines["bottom"].set_edgecolor("#4E616C")
        

        Python+matplotlib实现折线图的美化

        5. 把功能打包成函数

        上面的样子都还不错啦,接下来把这些东西都打包成一个函数。方便后面直接出图。

        def plot_xG_rolling(team, ax, window = 5, color_for = "blue", color_ag = "orange", data = df):
          '''
          This function creates a rolling average xG plot for a given team and rolling
          window.
        
          team (str): The team's name
          ax (obj): a Matplotlib axes.
          window (int): The number of periods for our rolling average.
          color_for (str): A hex color code for xG created.
          color_af (str): A hex color code for xG conceded.
          data (DataFrame): our df with the xG data.
          '''
        
          # -- Prepping the data
          home_df = data.copy()
          home_df = home_df.melt(id_vars = ["date", "home_team_name", "away_team_name"])
          home_df["venue"] = "H"
          home_df.rename(columns = {"home_team_name":"team", "away_team_name":"opponent"}, inplace = True)
          home_df.replace({"variable":{"home_team_xG":"xG_for", "away_team_xG":"xG_ag"}}, inplace = True)
        
          away_df = data.copy()
          away_df = away_df.melt(id_vars = ["date", "away_team_name", "home_team_name"])
          away_df["venue"] = "A"
          away_df.rename(columns = {"away_team_name":"team", "home_team_name":"opponent"}, inplace = True)
          away_df.replace({"variable":{"away_team_xG":"xG_for", "home_team_xG":"xG_ag"}}, inplace = True)
        
          df = pd.concat([home_df, away_df]).reset_index(drop = True)
        
          # ---- Filter the data
        
          Y_for = df[(df["team"] == team) & (df["variable"] == "xG_for")]["value"].reset_index(drop = True)
          Y_ag = df[(df["team"] == team) & (df["variable"] == "xG_ag")]["value"].reset_index(drop = True)
          X_ = pd.Series(range(len(Y_for)))
        
          if Y_for.shape[0] == 0:
            raise ValueError(f"Team {team} is not present in the DataFrame")
        
          # ---- Compute rolling average
        
          Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg.
          Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()
        
          # ---- Create auxiliary series for filling between curves
        
          X_aux = X_.copy()
          X_aux.index = X_aux.index * 10 # 9 aux points in between each match
          last_idx = X_aux.index[-1] + 1
          X_aux = X_aux.reindex(range(last_idx))
          X_aux = X_aux.interpolate()
        
          # --- Aux series for the xG created (Y_for)
          Y_for_aux = Y_for.copy()
          Y_for_aux.index = Y_for_aux.index * 10
          last_idx = Y_for_aux.index[-1] + 1
          Y_for_aux = Y_for_aux.reindex(range(last_idx))
          Y_for_aux = Y_for_aux.interpolate()
        
          # --- Aux series for the xG conceded (Y_ag)
          Y_ag_aux = Y_ag.copy()
          Y_ag_aux.index = Y_ag_aux.index * 10
          last_idx = Y_ag_aux.index[-1] + 1
          Y_ag_aux = Y_ag_aux.reindex(range(last_idx))
          Y_ag_aux = Y_ag_aux.interpolate()
        
          # --- Plotting our data
        
          # --- Remove spines and add gridlines
        
          ax.spines["left"].set_visible(False)
          ax.spines["top"].set_visible(False)
          ax.spines["right"].set_visible(False)
        
          ax.grid(ls = "--", lw = 0.25, color = "#4E616C")
        
          # --- The data
        
          for_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 4, color = color_for)
          ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 4, color = color_ag)
        
          # --- Fill between
        
          for index in range(len(X_aux) - 1):
              # Choose color based on which line's on top
              if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]:
                  color = for_[0].get_color()
              else:
                  color = ag_[0].get_color()
              
              # Fill between the current point and the next point in pur extended series.
              ax.fill_between([X_aux[index], X_aux[index+1]], 
                              [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], 
                              [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], 
                              color=color, zorder = 2, alpha = 0.2, ec = None)
              
        
          # --- Ensure minimum value of Y-axis is zero
          ax.set_ylim(0)
        
          # --- Adjust tickers and spine to match the style of our grid
        
          ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays
          xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])
        
          ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
          ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)
        
          ax.spines["bottom"].set_edgecolor("#4E616C")
        
          # --- Legend and team name
        
          Y_for_last = Y_for.iloc[-1]
          Y_ag_last = Y_ag.iloc[-1]
        
          # -- Add the team's name
          team_ = ax.text(
                    x = 0, y = ax.get_ylim()[1] + ax.get_ylim()[1]/20,
                    s = f'{team}',
                    color = "#4E616C",
                    va = 'center',
                    ha = 'left',
                    size = 7
                  )
          
          # -- Add the xG created label
          for_label_ = ax.text(
                    x = X_.iloc[-1] + 0.75, y = Y_for_last,
                    s = f'{Y_for_last:,.1f} xGF',
                    color = color_for,
                    va = 'center',
                    ha = 'left',
                    size = 6.5
                  )
        
          # -- Add the xG conceded label
          ag_label_ = ax.text(
                    x = X_.iloc[-1] + 0.75, y = Y_ag_last,
                    s = f'{Y_ag_last:,.1f} xGA',
                    color = color_ag,
                    va = 'center',
                    ha = 'left',
                    size = 6.5
                  )

        6.测试函数

        file_id = '1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB'
        url = f'https://drive.google.com/uc?id={file_id}'
        df = pd.read_csv(url, index_col=0)
        
        fig = plt.figure(figsize=(5, 2), dpi = 200)
        ax = plt.subplot(111)
        
        plot_xG_rolling("Sassuolo", ax, color_for = "#00A752", color_ag = "black", data = df)
        
        plt.tight_layout()
        

        Python+matplotlib实现折线图的美化

        再设置更加丰富的颜色:

        fig = plt.figure(figsize=(5, 8), dpi = 200, facecolor = "#EFE9E6")
        
        ax1 = plt.subplot(411, facecolor = "#EFE9E6")
        ax2 = plt.subplot(412, facecolor = "#EFE9E6")
        ax3 = plt.subplot(413, facecolor = "#EFE9E6")
        ax4 = plt.subplot(414, facecolor = "#EFE9E6")
        
        plot_xG_rolling("Sassuolo", ax1, color_for = "#00A752", color_ag = "black", data = df)
        plot_xG_rolling("Lazio", ax2, color_for = "#87D8F7", color_ag = "#15366F", data = df)
        plot_xG_rolling("Hellas Verona", ax3, color_for = "#153aab", color_ag = "#fdcf41", data = df)
        plot_xG_rolling("Empoli", ax4, color_for = "#00579C", color_ag = "black", data = df)
        
        plt.tight_layout()
        

        Python+matplotlib实现折线图的美化

        最后

        其实本文主要是对两个折线图做了一系列的优化和改进而已,主要是强调细节部分。

        涉及到的matplotlib的知识,也主要是在ticks、背景颜色、fill_between部分。

        以上就是Python+matplotlib实现折线图的美化的详细内容,更多关于Python matplotlib折线图的资料请关注其它相关文章!

        声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。