目录
  • 前言
  • 测试
    • 1. 整形除法和浮点数乘法
    • 2. 把整形预先乘10来比较
    • 3. 单次浮点乘法和整形乘法比较
  • 总结

    前言

    最近在做一个比赛,包含了如下内容:

    环上边的转账金额需要为前一条边的转账金额的90%-110%(含边界)。

    对于“金额”的处理,我一开始以浮点数乘法(乘1.1和0.9)外加eps修正精度的方式进行判断,有一位朋友看完我的代码后提出意见:

    C*S: 如果确定只有两位小数且不炸范围,那么有办法完全消除浮点数的使用。

    浮点数乘法和整形乘除法的效率经验比较

    然后我照着整形的方式改,结果发现更慢了……

    于是有了如下实验:

    测试

    1. 整形除法和浮点数乘法

    我们每次把整形加减自身/10,来模拟上下浮动10%,并把浮点形乘1.1(0.9)并修正eps精度误差。

    测试代码如下:

    int main()
    {
        const int N=1e8;
        int64_t t1=clk();
        for(int i=0;i<N;i++)
        {
            long long x=i;
            x=x+x/10;
            x=x-x/10;
        }
        int64_t t2=clk();
        for(int i=0;i<N;i++)
        {
            double x=i;
            x=x*1.1+1e-5;
            x=x*0.9-1e-5;
        }
        int64_t t3=clk();
        cout<<"long long "<<t2-t1<<endl;
        cout<<"double "<<t3-t2<<endl;
    }
    

    结果:

    浮点数乘法和整形乘除法的效率经验比较

    long long花了1541ms,是double的几乎十倍。

    除法相较于加减乘有较大的常数。

    2. 把整形预先乘10来比较

    现在再试试另一种方法,即把0.9x<y<1.1x变成9x<10y<11x的形式,这样不就全是整形乘法了吗?但是三次整形乘法和两次浮点乘法两次浮点加减法哪个慢呢?

    测试代码如下:

    int main()
    {
        const int N=1e8;
        int64_t t1=clk();
        for(int i=0;i<N;i++)
        {
            long long x=i;
            x=x*11;
            x=x*9;
            x=x*10;
        }
        int64_t t2=clk();
        for(int i=0;i<N;i++)
        {
            double x=i;
            x=x*1.1+1e-5;
            x=x*0.9-1e-5;
        }
        int64_t t3=clk();
        cout<<"long long "<<t2-t1<<endl;
        cout<<"double "<<t3-t2<<endl;
    }
    

    结果:

    浮点数乘法和整形乘除法的效率经验比较

    我们可以看到,虽然单次浮点乘法的常数会略大于整形乘法,但是三次整形乘法还是慢于两次浮点乘法的。

    3. 单次浮点乘法和整形乘法比较

    测试代码:

    int main()
    {
        const int N=1e8;
        int64_t t1=clk();
        for(int i=0;i<N;i++)
        {
            long long x=i;
            x=x*11ll;
        }
        int64_t t2=clk();
        for(int i=0;i<N;i++)
        {
            double x=i;
            x=x*1.1;
        }
        int64_t t3=clk();
        cout<<"long long "<<t2-t1<<endl;
        cout<<"double "<<t3-t2<<endl;
    }
    

    结果:

    浮点数乘法和整形乘除法的效率经验比较

    我们可以看到,单次浮点乘法的常数大概会比整形大50%左右,所以三次整形乘法还是略慢于两次浮点乘法的。

    总结

    这次实验给了我一个思路,即在对精度不敏感的情况下,可以把整形的/10之类的除法,换成*0.1的浮点乘法来提速,更多关于浮点数乘法和整形乘除法效率的资料请关注其它相关文章!

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。