目录
  • 1. 使用ggExtra结合ggplot2
    • 1)传统散点图
    • 2)密度函数
    • 3)直方图
    • 4)箱线图(宽窄的显示会有些问题)
    • 5)小提琴图(会有重叠,不建议使用)
    • 6)密度函数与直方图同时展现
  • 2. 使用cowplot与ggpubr
    • 1)重绘另一种散点图
    • 2)有缝拼接
    • 3)无缝拼接
  • 参考

    主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)使用cowplotggpubr进行绘制。(胜在灵活且美观)

    下面的绘图我们均以iris数据集为例。

    1. 使用ggExtra结合ggplot2

    1)传统散点图

    # library
    library(ggplot2)
    library(ggExtra)
    
    # classic plot
    p <- ggplot(iris) +
      geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) +  # alpha 调整点的透明度;shape 调整点的形状
      theme_bw() +
      theme(legend.position = "bottom") + # 图例置于底部
      labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称
    p
    

    使用R语言绘制散点图结合边际分布图教程

    下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

    2)密度函数

    # marginal plot: density
    ggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)
    

    使用R语言绘制散点图结合边际分布图教程

    3)直方图

    # marginal plot: histogram
    ggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)
    

    使用R语言绘制散点图结合边际分布图教程

    4)箱线图(宽窄的显示会有些问题)

    # marginal plot: boxplot
    ggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)
    

    使用R语言绘制散点图结合边际分布图教程

    5)小提琴图(会有重叠,不建议使用)

    # marginal plot: violin
    ggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)
    

    使用R语言绘制散点图结合边际分布图教程

    6)密度函数与直方图同时展现

    # marginal plot: densigram
    ggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)
    

    使用R语言绘制散点图结合边际分布图教程

    2. 使用cowplot与ggpubr

    1)重绘另一种散点图

    # Scatter plot colored by groups ("Species")
    sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",
                    color = "Species", palette = "jco",
                    size = 3, alpha = 0.6) +
      border() +
      theme(legend.position = "bottom")
    sp
    

    使用R语言绘制散点图结合边际分布图教程

    2)有缝拼接

    ① 密度函数

    library(cowplot)
    # Marginal density plot of x (top panel) and y (right panel)
    xplot <- ggdensity(iris, "Sepal.Length", fill = "Species",
                       palette = "jco")
    yplot <- ggdensity(iris, "Sepal.Width", fill = "Species", 
                       palette = "jco") +
      rotate()
    
    # Cleaning the plots
    sp <- sp + rremove("legend")
    yplot <- yplot + clean_theme() + rremove("legend")
    xplot <- xplot + clean_theme() + rremove("legend")
    # Arranging the plot using cowplot
    plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", 
              rel_widths = c(2, 1), rel_heights = c(1, 2))
    

    使用R语言绘制散点图结合边际分布图教程

    ② 未被压缩的箱线图

    # Marginal boxplot of x (top panel) and y (right panel)
    xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length", 
                       color = "Species", fill = "Species", palette = "jco",
                       alpha = 0.5, ggtheme = theme_bw())+
      rotate()
    yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",
                       color = "Species", fill = "Species", palette = "jco",
                       alpha = 0.5, ggtheme = theme_bw())
    # Cleaning the plots
    sp <- sp + rremove("legend")
    yplot <- yplot + clean_theme() + rremove("legend")
    xplot <- xplot + clean_theme() + rremove("legend")
    # Arranging the plot using cowplot
    plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", 
              rel_widths = c(2, 1), rel_heights = c(1, 2))
    

    使用R语言绘制散点图结合边际分布图教程

    3)无缝拼接

    # Main plot
    pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
      geom_point() +
      color_palette("jco")
    # Marginal densities along x axis
    xdens <- axis_canvas(pmain, axis = "x") +
      geom_density(data = iris, aes(x = Sepal.Length, fill = Species),
                   alpha = 0.7, size = 0.2) +
      fill_palette("jco")
    # Marginal densities along y axis
    # Need to set coord_flip = TRUE, if you plan to use coord_flip()
    ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +
      geom_density(data = iris, aes(x = Sepal.Width, fill = Species),
                   alpha = 0.7, size = 0.2) +
      coord_flip() +
      fill_palette("jco")
    p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
    p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
    ggdraw(p2)
    

    使用R语言绘制散点图结合边际分布图教程

    参考

    Articles – ggpubr: Publication Ready Plots——Perfect Scatter Plots with Correlation and Marginal Histograms

    Marginal distribution with ggplot2 and ggExtra

    以上就是使用R语言绘制散点图结合边际分布图教程的详细内容,更多关于R语言绘制散点图结合边际分布图的资料请关注其它相关文章!

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。