目录
  • 一、默认锚定框
  • 二、自定义锚定框
    • 1、训练时自动计算锚定框
    • 2、训练前手动计算锚定框
  • 参考的博文(表示感谢!):
    • 总结

      yolov5中增加了自适应锚定框(Auto Learning Bounding Box Anchors),而其他yolo系列是没有的。

      一、默认锚定框

      Yolov5 中默认保存了一些针对 coco数据集的预设锚定框,在 yolov5 的配置文件*.yaml 中已经预设了640×640图像大小下锚定框的尺寸(以 yolov5s.yaml 为例):

      # anchors
      anchors:
        - [10,13, 16,30, 33,23]  # P3/8
        - [30,61, 62,45, 59,119]  # P4/16
        - [116,90, 156,198, 373,326]  # P5/32
      

       anchors参数共有三行,每行9个数值;且每一行代表应用不同的特征图;

      1、第一行是在最大的特征图上的锚框

      2、第二行是在中间的特征图上的锚框

      3、第三行是在最小的特征图上的锚框;

      在目标检测任务中,一般希望在大的特征图上去检测小目标,因为大特征图才含有更多小目标信息,因此大特征图上的anchor数值通常设置为小数值,而小特征图上数值设置为大数值检测大的目标。

      二、自定义锚定框

      1、训练时自动计算锚定框

      yolov5 中不是只使用默认锚定框,在开始训练之前会对数据集中标注信息进行核查,计算此数据集标注信息针对默认锚定框的最佳召回率,当最佳召回率大于或等于0.98,则不需要更新锚定框;如果最佳召回率小于0.98,则需要重新计算符合此数据集的锚定框。

      核查锚定框是否适合要求的函数在 /utils/autoanchor.py 文件中:

      def check_anchors(dataset, model, thr=4.0, imgsz=640):
      

       其中 thr 是指 数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值。

      核查主要代码如下:

          def metric(k):  # compute metric
              r = wh[:, None] / k[None]
              x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
              best = x.max(1)[0]  # best_x
              aat = (x > 1. / thr).float().sum(1).mean()  # anchors above threshold
              bpr = (best > 1. / thr).float().mean()  # best possible recall
              return bpr, aat
       
          bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
      

      其中两个指标需要解释一下(bpr 和 aat):

      bpr(best possible recall) 

      aat(anchors above threshold) 

       其中 bpr 参数就是判断是否需要重新计算锚定框的依据(是否小于 0.98)。

      重新计算符合此数据集标注框的锚定框,是利用 kmean聚类方法实现的,代码在  /utils/autoanchor.py 文件中:

      def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
          """ Creates kmeans-evolved anchors from training dataset
              Arguments:
                  path: path to dataset *.yaml, or a loaded dataset
                  n: number of anchors
                  img_size: image size used for training
                  thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
                  gen: generations to evolve anchors using genetic algorithm
                  verbose: print all results
              Return:
                  k: kmeans evolved anchors
              Usage:
                  from utils.autoanchor import *; _ = kmean_anchors()
          """
          thr = 1. / thr
          prefix = colorstr('autoanchor: ')
       
          def metric(k, wh):  # compute metrics
              r = wh[:, None] / k[None]
              x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
              # x = wh_iou(wh, torch.tensor(k))  # iou metric
              return x, x.max(1)[0]  # x, best_x
       
          def anchor_fitness(k):  # mutation fitness
              _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
              return (best * (best > thr).float()).mean()  # fitness
       
          def print_results(k):
              k = k[np.argsort(k.prod(1))]  # sort small to large
              x, best = metric(k, wh0)
              bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
              print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
              print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
                    f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
              for i, x in enumerate(k):
                  print('%i,%i' % (round(x[0]), round(x[1])), end=',  ' if i < len(k) - 1 else '\n')  # use in *.cfg
              return k
       
          if isinstance(path, str):  # *.yaml file
              with open(path) as f:
                  data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
              from utils.datasets import LoadImagesAndLabels
              dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
          else:
              dataset = path  # dataset
       
          # Get label wh
          shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
          wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
       
          # Filter
          i = (wh0 < 3.0).any(1).sum()
          if i:
              print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
          wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
          # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
       
          # Kmeans calculation
          print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
          s = wh.std(0)  # sigmas for whitening
          k, dist = kmeans(wh / s, n, iter=30)  # points, mean distance
          k *= s
          wh = torch.tensor(wh, dtype=torch.float32)  # filtered
          wh0 = torch.tensor(wh0, dtype=torch.float32)  # unfiltered
          k = print_results(k)
       
          # Plot
          # k, d = [None] * 20, [None] * 20
          # for i in tqdm(range(1, 21)):
          #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
          # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
          # ax = ax.ravel()
          # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
          # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
          # ax[0].hist(wh[wh[:, 0]<100, 0],400)
          # ax[1].hist(wh[wh[:, 1]<100, 1],400)
          # fig.savefig('wh.png', dpi=200)
       
          # Evolve
          npr = np.random
          f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
          pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:')  # progress bar
          for _ in pbar:
              v = np.ones(sh)
              while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
                  v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
              kg = (k.copy() * v).clip(min=2.0)
              fg = anchor_fitness(kg)
              if fg > f:
                  f, k = fg, kg.copy()
                  pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
                  if verbose:
                      print_results(k)
       
          return print_results(k)
      

      对 kmean_anchors()函数中的参数做一下简单解释(代码中已经有了英文注释):

      • path:包含数据集文件路径等相关信息的 yaml 文件(比如 coco128.yaml), 或者 数据集张量(yolov5 自动计算锚定框时就是用的这种方式,先把数据集标签信息读取再处理)
      • n:锚定框的数量,即有几组;默认值是9
      • img_size:图像尺寸。计算数据集样本标签框的宽高比时,是需要缩放到 img_size 大小后再计算的;默认值是640
      • thr:数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值;默认值是4.0;自动计算时,会自动根据你所使用的数据集,来计算合适的阈值。
      • gen:kmean聚类算法迭代次数,默认值是1000
      • verbose:是否打印输出所有计算结果,默认值是true

      如果你不想自动计算锚定框,可以在 train.py 中设置参数即可:

      parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
      

      2、训练前手动计算锚定框

      如果使用 yolov5 训练效果并不好(排除其他原因,只考虑 “预设锚定框” 这个因素), yolov5在核查默认锚定框是否符合要求时,计算的最佳召回率大于0.98,没有自动计算锚定框;此时你可以自己手动计算锚定框。【即使自己的数据集中目标宽高比最大值小于4,默认锚定框也不一定是最合适的】

       首先可以自行编写一个程序,统计一下你所训练的数据集所有标签框宽高比,看下宽高比主要分布在哪个范围、最大宽高比是多少? 比如:你使用的数据集中目标宽高比最大达到了 5:1(甚至 10:1) ,那肯定需要重新计算锚定框了,针对coco数据集的最大宽高比是 4:1 。

      然后在 yolov5 程序中创建一个新的 python 文件 test.py,手动计算锚定框:

      import utils.autoanchor as autoAC
       
      # 对数据集重新计算 anchors
      new_anchors = autoAC.kmean_anchors('./data/mydata.yaml', 9, 640, 5.0, 1000, True)
      print(new_anchors)
      

      输入信息如下(只截取了部分):

      autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6604:  87%|████████▋ | 866/1000 [00:00<00:00, 2124.00it/s]autoanchor: thr=0.25: 0.9839 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.662-mean/best, past_thr=0.476-mean: 15,20,  38,25,  55,65,  131,87,  97,174,  139,291,  256,242,  368,382,  565,422
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,64,  127,87,  97,176,  142,286,  257,245,  374,379,  582,424
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,63,  126,86,  97,176,  143,285,  258,241,  369,381,  583,424
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  54,63,  127,86,  97,176,  143,285,  258,241,  369,380,  583,424
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  39,26,  53,63,  127,86,  97,175,  143,284,  257,243,  369,381,  582,422
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  40,26,  53,62,  129,85,  96,175,  143,287,  256,240,  370,378,  582,419
      autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6605: 100%|██████████| 1000/1000 [00:00<00:00, 2170.29it/s]
      Scanning '..\coco128\labels\train2017.cache' for images and labels… 128 found, 0 missing, 2 empty, 0 corrupted: 100%|██████████| 128/128 [00:00<?, ?it/s]
      autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
      autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20,  40,26,  53,62,  129,85,  96,175,  143,287,  256,240,  370,378,  582,419
      [[     14.931      20.439]
       [     39.648       25.53]
       [     53.371       62.35]
       [     129.07      84.774]
       [     95.719      175.08]
       [     142.69      286.95]
       [     256.46      239.83]
       [      369.9       378.3]
       [     581.87      418.56]]
       
      Process finished with exit code 0

      输出的 9 组新的锚定框即是根据自己的数据集来计算的,可以按照顺序替换到你所使用的配置文件*.yaml中(比如 yolov5s.yaml)。就可以重新训练了。

      参考的博文(表示感谢!):

      https://github.com/ultralytics/yolov5

      https://blog.csdn.net/flyfish1986/article/details/117594265

      https://zhuanlan.zhihu.com/p/183838757

      https://blog.csdn.net/aabbcccddd01/article/details/109578614

      总结

      声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。