目录
- 1.使用iloc对数据进行批量修改
- 2.对数据进行判定后,相互+/-/某个数*
- 第一种方法:使用内置函数where函数
- 第二种方法:使用mask函数
- 第三种方法:replace函数
1.使用iloc对数据进行批量修改
使用iloc最简单的就是将数据批量修改为某个特定的值
以下是我随便写入的数据:
现在将[‘d’,‘e’]列,[2,3,4]行的数据全部修改为0
import pandas as pd data = pd.read_excel('some_chaneg.xlsx') data1 = data data1.iloc[2:5,3:] = 0 data1
.iloc用法[],先行后列,并且都是不包含最后一个元素,例如取[2,3,4]就是[2:5],列同样遵循此规则
2.对数据进行判定后,相互+/-/某个数*
第一种方法:使用内置函数where函数
Series.where(cond, other=nan, inplace=False, axis=None, level=None, errors='rais',...)
解释下来就是如果cond为真,则保持原来的值,否则替换为other,这里的cond和other参数由我们自己写入控制
# data2为data数据的一部分 data2 = data.iloc[0:,1:] print(data2) data2.where(data2>25, data2+5,inplace=True)
选取data2中<25的数据,全部加上5
第二种方法:使用mask函数
mask和where刚好相反
mask(cond, other=nan)
- where:替换条件(condition)为False处的值
- mask:替换条件(condition)为True处的值
还是以data2举例
data2.mask(data2<25, data2+5, inplace=True)
第三种方法:replace函数
replace可以替换文本值,也可以使用字典替换多个值,也可以使用正则表达式嵌套方法,替换很多不同的值
替换文本值:
# 替换文本值 data3 = data data3.replace('wange', 'sheng', inplace=True) data3
替换多个值
将所有的0和1互换:
# 替换多个值 # 将所有的0和1互换 data3.replace({1:0,0:1},inplace=True)
运用正则表达式:
将所有含英文字母的全部变成Anonymous
# 切记使用正则表达式的时候,一定要添加上regex=True data3.replace('[a-zA-Z]+','Anonymous',regex=True,inplace=True)
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)