目录
- 参数解析
- 实例
pandas函数中pandas.DataFrame.from_dict 直接从字典构建DataFrame 。
参数解析
DataFrame from_dict()方法用于将Dict转换为DataFrame对象。 此方法接受以下参数。
- data: dict or array like object to create DataFrame.data :字典或类似数组的对象来创建DataFrame。
- orient: The orientation of the data. The allowed values are (‘columns’, ‘index’), default is the ‘columns’. orient :数据的方向。 允许值为(“列”,“索引”),默认值为“列”。 Specify orient='index' to create the DataFrame using dictionary keys as rows:。 当参数orient为index值时,会将字典的keys作为DataFrame的行。(默认是keys变为列)
- columns: a list of values to use as labels for the DataFrame when orientation is ‘index’. If it’s used with columns orientation, ValueError is raised. columns :当方向为“索引”时,用作DataFrame标签的值的列表。 如果与列方向一起使用,则会引发ValueError 。
实例
1)By default the keys of the dict become the DataFrame columns:
默认是将字典的keys作为列
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
2) Specify orient='index' to create the DataFrame using dictionary keys as rows: 参数orient为index值时,会将字典的keys作为DataFrame的行
data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d
3) orient为index值时, 可以手动命名列名
pd.DataFrame.from_dict(data, orient='index', columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d
参考: pandas.DataFrame.from_dict — pandas 1.3.4 documentation
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)