目录
  • 心理历程
  • 轮子用法
    • 大体流程
  • 部分源码

    心理历程

    写了一段时间C++后,真心感觉STL里的容器是个好东西。一个容器可以容纳任意类型,容器对外的接口可以操作任意类型的数据,甚至包括自定义类型的数据。这种泛型编程的思想,对于大型项目而言是非常有好处的。

    对于C而言,想实现泛型编程并非易事,甚至可以说非常繁琐,一大堆坑。最主要也没有现成的轮子可用。当然也有一些通过宏实现了泛型的基础功能,但是可读性,可调试性太差了。

    于是就想自己造一个轮子,实现基于C对窗口(顺序表)的泛化,目标就是实现不同类型下,规范接口的一致性。抛砖引玉。

    轮子用法

    int main( void )
    {
    	// 1、创建一个窗口,并初始化它,大小为10,类型为double
        ValueWindowSquential tmp;
        InitValueWindow( &tmp, kValueTypeList[ DOUBLE ], 10 );
    
        double insert_data = 0;
        for ( int i = 0; i < tmp.max_size; i++ )
        {
        	// 2、填充这个窗口,直到窗口填满
            insert_data = i * 10;
            if ( kWindowAlreadyFull == ValueWindowFixedInsert( &tmp, &insert_data ) )
            {
            	// 3、打印整个窗口
                printf( "start sort \r\n" );
                ShowTheWindow( &tmp );
    	
    			// 4、整个窗口排序
                ValueWindowSelectSort( &tmp );
    	
    			// 5、打印排序后的窗口
                printf( "end sort \r\n" );
                ShowTheWindow( &tmp );
    
                break;
            }
        }
    
        printf( "test generics \r\n" );
        return 0;
    }
    

    打印log如下:

    基于C语言实现泛型编程详解

    这时想换成创建一个uint8_t类型的串口,只需要改两个地方,这两个地方在C++里也避免不了。

    int main( void )
    {
        ValueWindowSquential tmp;
        InitValueWindow( &tmp, kValueTypeList[ UINT8 ], 10 );
    
        uint8_t insert_data = 0;
        for ( int i = 0; i < tmp.max_size; i++ )
        {
            insert_data = ( tmp.max_size - i ) * 1;
            if ( kWindowAlreadyFull == ValueWindowFixedInsert( &tmp, &insert_data ) )
            {
                printf( "start sort \r\n" );
                ShowTheWindow( &tmp );
    
                ValueWindowSelectSort( &tmp );
    
                printf( "end sort \r\n" );
                ShowTheWindow( &tmp );
    
                break;
            }
        }
    
        printf( "test generics \r\n" );
        return 0;
    }
    

    基于C语言实现泛型编程详解

    大体流程

    1.首先初始化一个空窗口对象,然后调用 InitValueWindow 传入窗口类型,大小,然后初始化它。

    2.调用 ValueWindowFixedInsert 往窗口中插入值,直到窗口满后反馈状态。

    3.打印整个窗口

    4.对窗口排序

    5.打印整个窗口

    这里的泛型主要通过查表实现了,将希望包含的类型加入表中,然后初始化时传入其类型和大小。

    插入数据的时候,需要保证数据类型和窗口类型统一,这算是个局限性了。

    窗口被填充完毕后,会有反馈窗口状态,这时可以调用 ShowTheWindow 将原始窗口打印。

    在调用 ValueWindowSelectSort 将窗口排序。排序完后再次打印。

    可以看到除了初始化的时候,需要设定窗口的类型,这和 std::vector< double > 没什么两样,插入数据时需要调用者确保数据类型与窗口统一。

    部分源码

    #ifndef __TEST_GENERICS_h
    #define __TEST_GENERICS_h
    
    #include <stdio.h>
    #include <string.h>
    #include <malloc.h>
    #include <stdlib.h>
    
    #include <assert.h>
    
    typedef signed char   int8_t;
    typedef unsigned char uint8_t;
    
    typedef signed short   int16_t;
    typedef unsigned short uint16_t;
    
    typedef signed int   int32_t;
    typedef unsigned int uint32_t;
    
    typedef enum
    {
        UINT8 = 0,
        INT,
        FLOAT,
        DOUBLE,
    
        ERROR
    
    } TypeName;
    
    const char* kValueTypeList[ ERROR + 1 ] = {
    
        "uint8_t",
    
        "int",
        "float",
        "double",
    
        "error",
    };
    
    TypeName ChangeStringToEnum( const char* tmp );
    
    /**
     * @brief 该结构体用于构建基础窗口顺序表
     *        this structure is used to build the basic window sequence table
     */
    typedef struct ValueWindowSquential
    {
        char* type;
        void* data;
    
        uint32_t max_size;
    
        uint32_t sequence;
    
    } ValueWindowSquential;
    
    /**
     * @brief 初始化窗口,根据窗口类型,大小,动态分配内存给到内部缓冲区
     *        initialize the window, and dynamically allocate memory to the internal buffer according to the window type and size
     *
     * @param tmp base structure for Window
     * @param type Window type
     * @param max_size Window size
     *
     * @throw assert
     */
    void InitValueWindow( ValueWindowSquential* tmp, const char* type, uint32_t max_size );
    
    /**
     * @brief 重置或销毁窗口
     *        reset or destroy window
     *
     * @param tmp base structure for Window
     */
    void ResetValueWindow( ValueWindowSquential* tmp );
    
    typedef enum
    {
        kWindowIsNotFull = ( 0 ),
        kWindowIsSliding,
    
        kWindowCanNotInsert,
        kWindowInputFail,
    
    } SlideWindowState;
    /**
     * @brief 滑动插入数据进入窗口,先入先出(FIFO模型)
     *        slide insert data into the window, first in first out (FIFO model)
     *
     * @param tmp base structure for Window
     * @param data insert data
     *
     * @return SlideWindowState
     *              kWindowIsNotFull    窗口未填充满
     *              kWindowIsSliding    窗口已填充满并开始滑动
     *
     *              kWindowCanNotInsert 窗口不允许插入
     *              kWindowInputFail    窗口插入数据失败
     */
    SlideWindowState ValueWindowSlideInsert( ValueWindowSquential* tmp, void* data );
    
    typedef enum
    {
        kWindowNotFull = ( 0 ),
        kWindowAlreadyFull,
    
        kFixWindowCanNotInsert,
        kFixWindowInputFail,
    
    } FixedWindowState;
    /**
     * @brief 固定窗,往窗口里插入数据,直到窗口满了反馈 kWindowAlreadyFull ,否在反馈 kWindowNotFull
     *        与滑动窗区别是,固定窗会采集多组数据,采集完成才能使用窗口,使用完后从头重新采集
     *        也就是降频处理数据,窗口大小20,10ms插入一次,那么降频到200ms处理一次窗口(数据)
     *
     * @param tmp base structure for Window
     * @param data insert data
     *
     * @return FixedWindowState
     *              kWindowNotFull 窗口未满
     *              kWindowAlreadyFull 窗口已满,可以开始操作
     *
     *              kFixWindowCanNotInsert 窗口不允许插入
     *              kFixWindowInputFail 窗口插入数据失败
     */
    FixedWindowState ValueWindowFixedInsert( ValueWindowSquential* tmp, void* data );
    
    /**
     * @brief 遍历并打印窗口
     *
     * @param tmp base structure for Window
     */
    void ShowTheWindow( ValueWindowSquential* tmp );
    
    #endif // __TEST_GENERICS_h
    
    /**
     * @file test_generics.cpp
     * @author benzs_war_pig (benzwarpig@outlook.com)
     * @brief   构建一种基于C的泛型顺序表,针对不同类型的顺序表,实现接口一致化。
     *        同时针对顺序表实现一些常用操作(排序,滤波,统计等)
     *
     *          build a generic sequence table based on C, and realize interface consistency
     *          for different types of sequence tables. At the same time, some common operations (sorting, filtering, statistics, etc.)
     *          are implemented for the sequence table
     *
     * @version 1.0
     * @date 2022-06-30
     *
     * @copyright Copyright (c) 2022
     *
     */
    #include "test_generics.h"
    
    #include "generics_impl.h"
    
    /**
     * @brief 将字符串转换成TypeName
     *          private interface
     *
     * @param tmp
     * @return TypeName
     */
    TypeName ChangeStringToEnum( const char* tmp )
    {
        assert( tmp != NULL );
    
        TypeName return_tmp = ERROR;
    
        if ( strcmp( tmp, kValueTypeList[ UINT8 ] ) == 0 )
        {
            return_tmp = UINT8;
        }
        else if ( strcmp( tmp, kValueTypeList[ FLOAT ] ) == 0 )
        {
            return_tmp = FLOAT;
        }
        else if ( strcmp( tmp, kValueTypeList[ DOUBLE ] ) == 0 )
        {
            return_tmp = DOUBLE;
        }
        else if ( strcmp( tmp, kValueTypeList[ INT ] ) == 0 )
        {
            return_tmp = INT;
        }
        else
        {
            printf( "error char* input !!!" );
            assert( 0 );
        }
        return return_tmp;
    }
    
    // 初始化窗口
    // Initialize window
    void InitValueWindow( ValueWindowSquential* tmp, const char* type, uint32_t max_size )
    {
        assert( tmp != NULL );
    
        tmp->type = ( char* ) malloc( strlen( type ) * sizeof( char ) );
        strncpy( tmp->type, type, strlen( type ) );
    
        tmp->max_size = max_size;
        tmp->sequence = 0;
    
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                tmp->data = ( uint8_t* ) malloc( max_size * sizeof( uint8_t ) );
                memset( tmp->data, 0, tmp->max_size );
            }
            break;
    
            case INT: {
                tmp->data = ( int* ) malloc( max_size * sizeof( int ) );
                memset( tmp->data, 0, tmp->max_size );
            }
            break;
    
            case FLOAT: {
                tmp->data = ( float* ) malloc( max_size * sizeof( float ) );
                memset( tmp->data, 0, tmp->max_size );
            }
            break;
    
            case DOUBLE: {
                tmp->data = ( double* ) malloc( max_size * sizeof( double ) );
                memset( tmp->data, 0, tmp->max_size );
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    
        printf( "type is : %s , number is : %d  \r\n", tmp->type, max_size );
    }
    
    // 重置/销毁窗口
    void ResetValueWindow( ValueWindowSquential* tmp )
    {
        tmp->sequence = 0;
        tmp->max_size = 0;
    
        if ( tmp->data != NULL )
        {
            free( tmp->data );
            tmp->data = NULL;
        }
    
        if ( tmp->type != NULL )
        {
            free( tmp->type );
            tmp->type = NULL;
        }
    }
    
    // 滑动往窗口插入数据
    SlideWindowState ValueWindowSlideInsert( ValueWindowSquential* tmp, void* data )
    {
        SlideWindowState return_tmp = kWindowIsNotFull;
    
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    tmp_buffer[ i - 1 ] = tmp_buffer[ i ];
                }
                uint8_t* res                    = ( uint8_t* ) data;
                tmp_buffer[ tmp->max_size - 1 ] = *res;
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    tmp_buffer[ i - 1 ] = tmp_buffer[ i ];
                }
                int* res                        = ( int* ) data;
                tmp_buffer[ tmp->max_size - 1 ] = *res;
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    tmp_buffer[ i - 1 ] = tmp_buffer[ i ];
                }
                float* res                      = ( float* ) data;
                tmp_buffer[ tmp->max_size - 1 ] = *res;
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    tmp_buffer[ i - 1 ] = tmp_buffer[ i ];
                }
                double* res                     = ( double* ) data;
                tmp_buffer[ tmp->max_size - 1 ] = *res;
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
        if ( ++tmp->sequence > tmp->max_size )
        {
            return_tmp    = kWindowIsSliding;
            tmp->sequence = tmp->max_size;
        }
    
        return return_tmp;
    }
    
    // 插入数据直到填满整个窗口
    FixedWindowState ValueWindowFixedInsert( ValueWindowSquential* tmp, void* data )
    {
        FixedWindowState return_tmp = kWindowNotFull;
    
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
                uint8_t* res        = ( uint8_t* ) data;
    
                tmp_buffer[ tmp->sequence ] = *res;
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
                int* res        = ( int* ) data;
    
                tmp_buffer[ tmp->sequence ] = *res;
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
                float* res        = ( float* ) data;
    
                tmp_buffer[ tmp->sequence ] = *res;
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
                double* res        = ( double* ) data;
    
                tmp_buffer[ tmp->sequence ] = *res;
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    
        if ( ++tmp->sequence >= tmp->max_size )
        {
            tmp->sequence = 0;
            return_tmp    = kWindowAlreadyFull;
        }
        return return_tmp;
    }
    
    // 打印窗口内全部值
    void ShowTheWindow( ValueWindowSquential* tmp )
    {
        // printf("current_type:{%d}", ChangeStringToEnum(tmp->type));
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* msg = ( uint8_t* ) tmp->data;
                for ( int i = 0; i < tmp->max_size; ++i )
                {
                    printf( "i : {%d} , %d \r\n", i, msg[ i ] );
                }
            }
            break;
    
            case INT: {
                int* msg = ( int* ) tmp->data;
                for ( int i = 0; i < tmp->max_size; ++i )
                {
                    printf( "i : {%d} , %d \r\n", i, msg[ i ] );
                }
            }
            break;
    
            case FLOAT: {
                float* msg = ( float* ) tmp->data;
                for ( int i = 0; i < tmp->max_size; ++i )
                {
                    printf( "i : {%d} , %f \r\n", i, msg[ i ] );
                }
            }
            break;
    
            case DOUBLE: {
                double* msg = ( double* ) tmp->data;
                for ( int i = 0; i < tmp->max_size; ++i )
                {
                    printf( "i : {%d} , %f \r\n", i, msg[ i ] );
                }
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    }
    
    int main( void )
    {
        ValueWindowSquential tmp;
        InitValueWindow( &tmp, kValueTypeList[ DOUBLE ], 10 );
    
        double insert_data = 0;
        for ( int i = 0; i < tmp.max_size; i++ )
        {
            insert_data = ( tmp.max_size - i ) * 10;
            if ( kWindowAlreadyFull == ValueWindowFixedInsert( &tmp, &insert_data ) )
            {
                printf( "start sort \r\n" );
                ShowTheWindow( &tmp );
    
                ValueWindowSelectSort( &tmp );
    
                printf( "end sort \r\n" );
                ShowTheWindow( &tmp );
    
                break;
            }
        }
        ResetValueWindow(&tmp);
    
        printf( "test generics \r\n" );
        return 0;
    }
    

    这是最开始的一版源码,基本的思路是基于 void* 实现对窗口的泛化,把窗口的地址,大小,类型 在初始化时设定好,以后所有的结构便基于这些信息,实现接口一致性。

    目前实现了两种窗口类型, ValueWindowSlideInsert (滑动窗) 和 ValueWindowFixedInsert(固定窗) 。 两者不同之处只是插入数据时的处理不同。滑动窗遵循FIFO模型,即先入先出,窗口状态有未满和开始滑动,一般开始滑动后再对窗口进行操作。

    固定窗有未满和已满两种状态,已满后会清空窗口,重新开始填充,这也是两种常见的窗口模型。

    在STL里,当有一些底层数据结构去存储数据时,要有一些容器的方法(算法),比如排序等,这里先实现了一些基础的泛型算法接口:

    #ifndef GENERICS_IMPL_H
    #define GENERICS_IMPL_H
    
    #include <stdbool.h>
    
    #include "test_generics.h"
    
    /**
     * @file generics_impl.h
     * @author benzs_war_pig (benzwarpig@outlook.com)
     * @brief 该文件实现了一些操作泛型顺序表的算法,如排序,查找,遍历,判断变化率等等
     *
     *        this file implements some algorithms for operating generic sequential tables, such as sorting, searching, traversing,
     *          judging the rate of change, and so on
     *
     * @version 1.0
     * @date 2022-06-30
     *
     * @copyright Copyright (c) 2022
     *
     */
    
    /**
     * @brief 交换顺序表中两个成员的值
     *
     * @param tmp base structure for Window
     * @param i
     * @param j
     */
    static void swap( ValueWindowSquential* tmp, uint32_t i, uint32_t j )
    {
        assert( tmp != NULL );
        // assert( i > tmp->max_size || j > tmp->max_size );
        // assert( i >= tmp->max_size || j >= tmp->max_size );
    
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
                uint8_t  res        = tmp_buffer[ i ];
    
                tmp_buffer[ i ] = tmp_buffer[ j ];
                tmp_buffer[ j ] = res;
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
                int  res        = tmp_buffer[ i ];
    
                tmp_buffer[ i ] = tmp_buffer[ j ];
                tmp_buffer[ j ] = res;
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
                float  res        = tmp_buffer[ i ];
    
                tmp_buffer[ i ] = tmp_buffer[ j ];
                tmp_buffer[ j ] = res;
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
                double  res        = tmp_buffer[ i ];
    
                tmp_buffer[ i ] = tmp_buffer[ j ];
                tmp_buffer[ j ] = res;
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    }
    
    static inline void ValueWindowBubbleSort( ValueWindowSquential* tmp )
    {
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
    
                bool is_end_loop = true;
                for ( int i = 0; i < tmp->max_size && is_end_loop; i++ )
                {
                    is_end_loop = false;
    
                    for ( int j = tmp->max_size - 1; j >= i; j-- )
                    {
                        if ( tmp_buffer[ j - 1 ] > tmp_buffer[ j ] )
                        {
                            swap( tmp, j - 1, j );
                            is_end_loop = true;
                        }
                    }
                }
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
    
                bool is_end_loop = true;
                for ( int i = 0; i < tmp->max_size && is_end_loop; i++ )
                {
                    is_end_loop = false;
    
                    for ( int j = tmp->max_size - 1; j >= i; j-- )
                    {
                        if ( tmp_buffer[ j - 1 ] > tmp_buffer[ j ] )
                        {
                            swap( tmp, j - 1, j );
                            is_end_loop = true;
                        }
                    }
                }
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
    
                bool is_end_loop = true;
                for ( int i = 0; i < tmp->max_size && is_end_loop; i++ )
                {
                    is_end_loop = false;
    
                    for ( int j = tmp->max_size - 1; j >= i; j-- )
                    {
                        if ( tmp_buffer[ j - 1 ] > tmp_buffer[ j ] )
                        {
                            swap( tmp, j - 1, j );
                            is_end_loop = true;
                        }
                    }
                }
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
    
                bool is_end_loop = true;
                for ( int i = 0; i < tmp->max_size && is_end_loop; i++ )
                {
                    is_end_loop = false;
    
                    for ( int j = tmp->max_size - 1; j >= i; j-- )
                    {
                        if ( tmp_buffer[ j - 1 ] > tmp_buffer[ j ] )
                        {
                            swap( tmp, j - 1, j );
                            is_end_loop = true;
                        }
                    }
                }
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    }
    
    static inline void ValueWindowSelectSort( ValueWindowSquential* tmp )
    {
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
    
                int tmp_data = 0;
                for ( int i = 0; i < tmp->max_size; i++ )
                {
                    tmp_data = i;
                    for ( int j = i; j < tmp->max_size; j++ )
                    {
                        if ( tmp_buffer[ tmp_data ] > tmp_buffer[ j ] )
                        {
                            tmp_data = j;
                        }
                    }
                    if ( tmp_data != i )
                    {
                        swap( tmp, i, tmp_data );
                    }
                }
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
    
                int tmp_data = 0;
                for ( int i = 0; i < tmp->max_size; i++ )
                {
                    tmp_data = i;
                    for ( int j = i; j < tmp->max_size; j++ )
                    {
                        if ( tmp_buffer[ tmp_data ] > tmp_buffer[ j ] )
                        {
                            tmp_data = j;
                        }
                    }
                    if ( tmp_data != i )
                    {
                        swap( tmp, i, tmp_data );
                    }
                }
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
    
                int tmp_data = 0;
                for ( int i = 0; i < tmp->max_size; i++ )
                {
                    tmp_data = i;
                    for ( int j = i; j < tmp->max_size; j++ )
                    {
                        if ( tmp_buffer[ tmp_data ] > tmp_buffer[ j ] )
                        {
                            tmp_data = j;
                        }
                    }
                    if ( tmp_data != i )
                    {
                        swap( tmp, i, tmp_data );
                    }
                }
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
    
                int tmp_data = 0;
                for ( int i = 0; i < tmp->max_size; i++ )
                {
                    tmp_data = i;
                    for ( int j = i; j < tmp->max_size; j++ )
                    {
                        if ( tmp_buffer[ tmp_data ] > tmp_buffer[ j ] )
                        {
                            tmp_data = j;
                        }
                    }
                    if ( tmp_data != i )
                    {
                        swap( tmp, i, tmp_data );
                    }
                }
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    }
    
    static inline void ValueWindowInsertSort( ValueWindowSquential* tmp )
    {
        switch ( ChangeStringToEnum( tmp->type ) )
        {
            case UINT8: {
                uint8_t* tmp_buffer = ( uint8_t* ) tmp->data;
    
                uint8_t tmp_data = 0;
                int     j        = 0;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    if ( tmp_buffer[ i ] < tmp_buffer[ i - 1 ] )
                    {
                        tmp_data = tmp_buffer[ i ];
                        // TAG : 数据整体向后迁移,寻找数值更大的成员
                        for ( j = i - 1; tmp_buffer[ j ] > tmp_data && j >= 0; j-- )
                        {
                            tmp_buffer[ j + 1 ] = tmp_buffer[ j ];
                        }
                        tmp_buffer[ j + 1 ] = tmp_data;
                    }
                }
            }
            break;
    
            case INT: {
                int* tmp_buffer = ( int* ) tmp->data;
    
                int tmp_data = 0;
                int j        = 0;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    if ( tmp_buffer[ i ] < tmp_buffer[ i - 1 ] )
                    {
                        tmp_data = tmp_buffer[ i ];
                        // TAG : 数据整体向后迁移,寻找数值更大的成员
                        for ( j = i - 1; tmp_buffer[ j ] > tmp_data && j >= 0; j-- )
                        {
                            tmp_buffer[ j + 1 ] = tmp_buffer[ j ];
                        }
                        tmp_buffer[ j + 1 ] = tmp_data;
                    }
                }
            }
            break;
    
            case FLOAT: {
                float* tmp_buffer = ( float* ) tmp->data;
    
                float tmp_data = 0;
                int   j        = 0;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    if ( tmp_buffer[ i ] < tmp_buffer[ i - 1 ] )
                    {
                        tmp_data = tmp_buffer[ i ];
                        // TAG : 数据整体向后迁移,寻找数值更大的成员
                        for ( j = i - 1; tmp_buffer[ j ] > tmp_data && j >= 0; j-- )
                        {
                            tmp_buffer[ j + 1 ] = tmp_buffer[ j ];
                        }
                        tmp_buffer[ j + 1 ] = tmp_data;
                    }
                }
            }
            break;
    
            case DOUBLE: {
                double* tmp_buffer = ( double* ) tmp->data;
    
                double tmp_data = 0;
                int    j        = 0;
                for ( int i = 1; i < tmp->max_size; i++ )
                {
                    if ( tmp_buffer[ i ] < tmp_buffer[ i - 1 ] )
                    {
                        tmp_data = tmp_buffer[ i ];
                        // TAG : 数据整体向后迁移,寻找数值更大的成员
                        for ( j = i - 1; tmp_buffer[ j ] > tmp_data && j >= 0; j-- )
                        {
                            tmp_buffer[ j + 1 ] = tmp_buffer[ j ];
                        }
                        tmp_buffer[ j + 1 ] = tmp_data;
                    }
                }
            }
            break;
    
            default: {
                printf( "error tmp->type input !!!" );
                assert( 0 );
            }
            break;
        }
    }
    #endif // GENERICS_IMPL_H
    

    以上就是基于C语言实现泛型编程详解的详细内容,更多关于C语言 泛型编程的资料请关注其它相关文章!

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。