目录
  • 模型的保存与加载
  • 保存和加载模型参数
  • 保存和加载模型参数与结构
  • 总结

模型的保存与加载

首先,需要导入两个包

import torch
import torchvision.models as models

保存和加载模型参数

PyTorch模型将学习到的参数存储在一个内部状态字典中,叫做state_dict。这可以通过torch.save方法来实现。
我们导入预训练好的VGG16模型,并将其保存。我们将state_dict字典保存在model_weights.pth文件中。

model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')

想要加载模型参数,我们需要创建一个和原模型一样的实例,然后通过load_state_dict()方法来加载模型参数

  • 创建一个VGG16模型实例(未经过预训练的)
  • 加载本地参数
model = models.vgg16() # we do not specify pretrained=True, i.e. do not load default weights
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()

注意:在进行测试前,如果模型中有dropout层和batch normalization层的话,一定要使用model.eval()将模型转到测试模式。

  • train模式下,dropout网络层会按照设定的参数p设置保留激活单元的概率(保留概率=p); batchnorm层会继续计算数据的meanvar等参数并更新。
  • val模式下,dropout层会让所有的激活单元都通过,而batchnorm层会停止计算和更新meanvar,直接使用在训练阶段已经学出的meanvar

当然,相同的,在模型进行训练之前,要使用model.train()来将模型转为训练模式

保存和加载模型参数与结构

当加载模型权重时,我们需要首先实例化模型类,因为类定义了网络的结构。我们可能希望将这个类的结构与模型保存在一起。这样的话,我们可以将model而不是model.state_dict()作为参数。

torch.save(model, 'model.pth')

这样,我们加载模型的时候就不用再新建一个实例了。加载方式如下所示

model = torch.load('model.pth')

这种方式在网络比较大的时候可能比较慢,因为相较于上面的方式多存储了网络的结构

总结

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。