使用drop函数删除dataframe的某列或某行数据:
drop(labels, axis=0, level=None, inplace=False, errors='raise')
-- axis为0时表示删除行,axis为1时表示删除列
常用参数如下:

import pandas as pd
import numpy as np
data = {'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'],
'Number':[100, 150, 120, 90, 30, 2],
'Value': [1, 2, 3, 4, 5, 6],
'label': list('abcdef')}
df = pd.DataFrame(data)
print("df原数据:\n", df, '\n')
out:
df原数据:
Country Number Value label
0 China 100 1 a
1 US 150 2 b
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除单列:
print(df.drop('Country', axis = 1))
out:
Number Value label
0 100 1 a
1 150 2 b
2 120 3 c
3 90 4 d
4 30 5 e
5 2 6 f
删除多列:
print(df.drop(['Country','Number'], axis = 1)) out: Value label 0 1 a 1 2 b 2 3 c 3 4 d 4 5 e 5 6 f
删除单行:
print(df.drop(labels = 1, axis = 0))
out:
Country Number Value label
0 China 100 1 a
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
删除多行:
print(df.drop(labels = [1,2], axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
使用range函数删除连续多行:
print(df.drop(labels = range(1,3), axis = 0))
out:
Country Number Value label
0 China 100 1 a
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

评论(0)