目录
  • 1.MD5用途
  • 2.原理介绍
    • 1. 对输入的数据进行填充
    • 2. 填入输入信息的长度
    • 3.数据处理,输出结果
  • 3.linux指令获取MD5
    • 4.通过c语音计算MD5值
      • 1.结构体定义
      • 2.常数初始化
      • 3.数据处理以及变换
      • 4.函数调用

    1.MD5用途

    MD5全程Message-Digest Algorithm 5,即消息摘要算法第五版,是属于hash算法的一种。

    MD5原来被用作信息加密,但是MD5已经被院士大佬破解(附破解小工具),现在MD5主要被用来(指作者)文件完整性校验。

    MD5输出值有16个字节(128bit),打印都是以hex形式打印出来。

    2.原理介绍

    1. 对输入的数据进行填充

    对信息进行数据填充,使信息的长度对512取模得448,设信息长度为X,即满足X mod 512=448(x/512d的余数等于448)。根据此公式得出需要填充的数据长度。填充方法是在信息后面填充第一位为1,其余为0。填充完后,信息的长度就为N*512+448(bit)。

    2. 填入输入信息的长度

    原信息长度用64位(二进制)表示。如果信息长度大于264,则只使用其低64位的值,即(信息长度对264取模),并且填充到前面一步得到的结果后面。经过这两步的处理,现在的信息字节长度=N*512+448+64=(N+1)*512,即长度恰好是512的整数倍数。这样做的原因是为满足后面处理中对信息长度的要求。

    3.数据处理,输出结果

    4个常数: A = 0x67452301, B = 0x0EFCDAB89, C = 0x98BADCFE, D = 0x10325476;

    4个函数:F(X,Y,Z)=(X & Y) | ((~X) & Z); G(X,Y,Z)=(X & Z) | (Y & (~Z)); H(X,Y,Z)=X ^ Y ^ Z; I(X,Y,Z)=Y ^ (X | (~Z));

    把消息分以512位为一分组进行处理,每一个分组进行4轮变换,以上面所说4个常数为起始变量进行计算,重新输出4个变量,以这4个变量再进行下一分组的运算,如果已经是最后一个分组,则这4个变量为最后的结果,即MD5值。

    3.linux指令获取MD5

    shuaiyin@raspberrypi:~ $ md5sum sherpa-ncnn
    500b8431e2941adb66e11d89ecdabeca  sherpa-ncnn 
    

    4.通过c语音计算MD5值

    1.结构体定义

    typedef struct {
          uint32_t buf[4];  //4个常数
          uint32_t bits[2];  //长度
          unsigned char in[64];  //变量空间
        } md5_ctx_t;
    

    2.常数初始化

    void md5_init(md5_ctx_t *ctx) {
        ctx->buf[0] = 0x67452301;
        ctx->buf[1] = 0xefcdab89;
        ctx->buf[2] = 0x98badcfe;
        ctx->buf[3] = 0x10325476;
    
        ctx->bits[0] = 0;
        ctx->bits[1] = 0;
    }
    
    #define F1(x, y, z) (z ^ (x & (y ^ z)))
    #define F2(x, y, z) F1(z, x, y)
    #define F3(x, y, z) (x ^ y ^ z)
    #define F4(x, y, z) (y ^ (x | ~z))
    
    #define MD5STEP(f, w, x, y, z, data, s) \
    
        (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
    

    3.数据处理以及变换

    static void md5_transform(uint32_t buf[4], uint32_t const in[16]) {
        register uint32_t a, b, c, d;
    
        a = buf[0];
        b = buf[1];
        c = buf[2];
        d = buf[3];
    
        MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
        MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
        MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
        MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
        MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
        MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
        MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
        MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
        MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
        MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
        MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
        MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
        MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
        MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
        MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
        MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    
        MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
        MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
        MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
        MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
        MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
        MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
        MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
        MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
        MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
        MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
        MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
        MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
        MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
        MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
        MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
        MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    
        MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
        MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
        MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
        MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
        MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
        MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
        MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
        MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
        MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
        MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
        MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
        MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
        MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
        MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
        MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
        MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    
        MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
        MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
        MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
        MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
        MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
        MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
        MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
        MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
        MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
        MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
        MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
        MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
        MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
        MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
        MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
        MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    
        buf[0] += a;
        buf[1] += b;
        buf[2] += c;
        buf[3] += d;
    }
    void md5_update(md5_ctx_t *ctx, const uint8_t *buf, size_t len) {
        uint32_t t;
    
        t = ctx->bits[0];
        if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) ctx->bits[1]++;
        ctx->bits[1] += (uint32_t) len >> 29;
    
        t = (t >> 3) & 0x3f;
    
        if (t) {
            unsigned char *p = (unsigned char *) ctx->in + t;
    
            t = 64 - t;
            if (len < t) {
                memcpy(p, buf, len);
                return;
            }
            memcpy(p, buf, t);
            byteReverse(ctx->in, 16);
            md5_transform(ctx->buf, (uint32_t *) ctx->in);
            buf += t;
            len -= t;
        }
    
        while (len >= 64) {
            memcpy(ctx->in, buf, 64);
            byteReverse(ctx->in, 16);
            md5_transform(ctx->buf, (uint32_t *) ctx->in);
            buf += 64;
            len -= 64;
        }
    
        memcpy(ctx->in, buf, len);
    }
    
    
    void md5_final(uint8_t digest[16], md5_ctx_t *ctx) {
        unsigned count;
        unsigned char *p;
        uint32_t *a;
        count = (ctx->bits[0] >> 3) & 0x3F;
        p = ctx->in + count;
        *p++ = 0x80;
        count = 64 - 1 - count;
        if (count < 8) {
            memset(p, 0, count);
            byteReverse(ctx->in, 16);
            md5_transform(ctx->buf, (uint32_t *) ctx->in);
            memset(ctx->in, 0, 56);
        } else {
            memset(p, 0, count - 8);
        }
        byteReverse(ctx->in, 14);
        a = (uint32_t *) ctx->in;
        a[14] = ctx->bits[0];
        a[15] = ctx->bits[1];
        md5_transform(ctx->buf, (uint32_t *) ctx->in);
        byteReverse((unsigned char *) ctx->buf, 4);
        memcpy(digest, ctx->buf, 16);
        memset((char *) ctx, 0, sizeof(*ctx));
    }

    4.函数调用

    ```c
    void md5(const uint8_t *buf, size_t len, uint8_t digest[16]) {
        md5_ctx_t ctx;
        md5_init(&ctx);
        md5_update(&ctx, buf, len);
        md5_final(digest, &ctx);

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。