目录
  • 插入排序
    • ①直接插入排序
      • 基本思想
      • 动图演示
      • 代码实现
    • ②希尔排序
      • 基本思想
      • 图示
      • 代码实现
  • 选择排序
    • ③直接选择排序
      • 基本思想
      • 动图演示
      • 代码实现
    • ④堆排序
      • 基本思想
      • 建堆需要注意的问题
      • 图示
      • 代码实现
  • 交换排序
    • ⑤冒泡排序
      • 基本思想
      • 动图演示
      • 代码实现
    • ⑥快速排序
      • 基本思想
      • 基本框架
      • Partion函数分析
      • Partion函数的优化
      • 快速排序代码实现
  • 归并排序
    • ⑦归并排序
      • 基本思想
      • 动图演示
      • 代码实现
  • 排序算法复杂度及稳定性分析

    插入排序

    ①直接插入排序

    基本思想

    每次从一个有序序列开始,将待排元素与有序序列中的元素从后往前逐个比较,

    若有序序列中的元素大于待排元素,则将较大的元素往后覆盖;

    否则,将待排元素插入其前面,并结束此轮比较。

    动图演示

    七大经典排序算法图解

    代码实现

    void InsertSort(int* a, int n)
    {
    	for (int i = 0; i < n - 1; i++)
    	{
    		int end = i;
    		int x = a[end + 1];
    		while (end >= 0)
    		{
    			if (a[end] > x)
    			{
    				a[end + 1] = a[end];
    				end--;
    			}
    			else
    				break;
    		}
    		a[end + 1] = x;
    	}
    }

    ②希尔排序

    基本思想

    先选定一个整数作为 gap ,将待排序列以 gap 为间隔分成 gap 组,

    先对每组进行直接插入排序,

    然后再适当缩小 gap ,重复上述步骤。

    当 gap = 1 时,此时序列已经进行了多次预排序,接近有序。

    这时再对序列进行直接插入排序,就能达到优化的效果。

    图示

    七大经典排序算法图解

    代码实现

    void ShellSort(int* a, int n)
    {
    	//多次预排序(gap > 1) + 直接插入( gap == 1)
    	int gap = n;
    	while (gap > 1)
    	{
    		//使gap最后一次一定能到1
    		gap = gap / 3 + 1;
    		//多组一起排
    		for (int i = 0; i < n - gap; ++i)
    		{
    			int end = i;
    			int x = a[end + gap];
    			while (end >= 0)
    			{
    				if (a[end] > x)
    				{
    					a[end + gap] = a[end];
    					end -= gap;
    				}
    				else
    					break;
    			}
    			a[end + gap] = x;
    		}
    	}
    }

    选择排序

    ③直接选择排序

    基本思想

    每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始(末尾)位置,直到全部待排序的数据元素排完 。

    动图演示

    以每次选出最小值为例

    七大经典排序算法图解

    代码实现

    void Swap(int* px, int* py)
    {
    	int tmp = *px;
    	*px = *py;
    	*py = tmp;
    }
     
    void SelectSort(int* a, int n)
    {
    	int begin = 0;
    	while (begin < n - 1)
    	{
    		int mini = begin;
    		for (int i = begin; i < n; i++)
    		{
    			if (a[i] < a[mini])
    				mini = i;
    		}
    		Swap(&a[begin], &a[mini]);
    		++begin;
    	}
    }

    ④堆排序

    基本思想

    小堆根上的元素是堆中最小的元素,大堆根上的元素是堆中最大的元素。

    先将待排序列建成小(大)堆,

    获取堆根上的元素,这样就达到了选出待排序列中最小(大)元素的目的,

    然后再将其放至正确位置。

    建堆需要注意的问题

    若将待排序列建成小堆,则每次可将待排序列中最小的元素放至正确的位置,但每次排除堆根后,剩下元素组成的堆结构被打乱,需要对剩下待排序列重新建堆,反而增加的问题的复杂性。

    故我们将其建成大堆,每次将堆根上的元素(待排序列中最大的元素)与待排序列中最后一个元素进行交换,将大堆根上的元素换至正确位置,然后再使用向下调整算法,将交换上来的元素调整至一个大堆中的合适位置。

    图示

    七大经典排序算法图解

    代码实现

    void Swap(int* px, int* py)
    {
    	int tmp = *px;
    	*px = *py;
    	*py = tmp;
    }
     
    //建大堆的向下调整算法
    void AdjustDown(int* a, int n, int parent)
    {
    	int child = parent * 2 + 1;
    	while (child < n)
    	{
    		if (child + 1 < n && a[child + 1] > a[child])
    			++child;
    		if (a[child] > a[parent])
    		{
    			Swap(&a[child], &a[parent]);
    			parent = child;
    			child = parent * 2 + 1;
    		}
    		else
    			break;
    	}
    }
     
    void HeapSort(int* a, int n)
    {
        //先使用向下调整算法,从最后一个元素的父亲开始建堆
    	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
    	{
    		AdjustDown(a, n, i);
    	}
        //先交换,再调整
    	for (int end = n - 1; end > 0; --end)
    	{
    		Swap(&a[0], &a[end]);
    		AdjustDown(a, end, 0);
    	}
    }

    交换排序

    ⑤冒泡排序

    基本思想

    从待排序列的首元素开始,从前往后依次进行比较,

    若大于则交换,将其继续与后面元素比较,直到被放至正确位置。

    否则迭代至与其比较的元素,重复上面的步骤。

    动图演示

    七大经典排序算法图解

    代码实现

    void Swap(int* px, int* py)
    {
    	int tmp = *px;
    	*px = *py;
    	*py = tmp;
    }
     
    void BubbleSort(int* a, int n)
    {
    	for (int j = 0; j < n; j++)
    	{
    		for (int i = 0; i < n - j - 1; i++)
    		{
    			if (a[i] > a[i + 1])
    			{
    				Swap(&a[i], &a[i + 1]);
    			}
    		}
    	}
    }

    ⑥快速排序

    基本思想

    任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

    基本框架

    void QuickSort(int* a, int left, int right)
    {
    	if (left >= right)
    		return;
     
        //先将选定的基准值排好
    	int keyi = Partion(a, left, right);
     
        //再通过递归排序其左右子序列
    	QuickSort(a, left, keyi - 1);
    	QuickSort(a, keyi + 1, right);
    }

    Partion函数分析

    Partion函数在这里的作用是:

    将选定的基准值排到正确位置,并将待排序列分成比基准值小的左子序列,比基准值大的右子序列。

    将区间按照基准值划分为左右两半部分的常见方式有:

    1.hoare版本
    基本思想:

    选择待排序列的最左值的下标为基准值所指下标,当区间左下标小于区间右下标时,先从右开始找比基准值小的值,找到后再从左开始找比基准值大的值,都找到后,将左右下标对应的值交换,然后从右开始重复上述步骤,直到左右下标相等。当左右下标相等时,将下标所指向的值与基准值互换。

    动图演示:

    七大经典排序算法图解

    代码实现:
    //hoare版本
    int Partion(int* a, int left, int right)
    {
    	int keyi = left;
    	while (left < right)
    	{
    		//右边先走,找小
    		while (left < right && a[right] >= a[keyi])
    		{
    			--right;
    		}
    		//左边走,找大
    		while (left < right && a[left] <= a[keyi])
    		{
    			++left;
    		}
    		Swap(&a[left], &a[right]);
    	}
    	Swap(&a[keyi], &a[left]);
    	return left;
    }
    2.挖坑法
    基本思想:

    选择待排序列的最左值为基准值,将其下标记为坑的下标。当区间左下标小于区间右下标时,先从右开始找比基准值小的值,找到后将其放在当前坑上,并将坑替换到所找位置。再从左开始找比基准值大的值,找到后同样将其放在当前坑上,然后从右开始重复上述步骤,直到左右下标相等。当左右下标相等时,把基准值放到当前坑所在位置。

    动图演示:

    七大经典排序算法图解

    代码实现:
    //挖坑法
    int Partion(int* a, int left, int right)
    {
        int key = a[left];
    	int pivot = left;
    	while (left < right)
    	{
    		//右边先走,找小
    		while (left < right && a[right] >= key)
    		{
    			--right;
    		}
    		//值覆盖,坑替换
    		a[pivot] = a[right];
    		pivot = right;
    		//左边走,找大
    		while (left < right && a[left] <= key)
    		{
    			++left;
    		}
    		//值覆盖,坑替换
    		a[pivot] = a[left];
    		pivot = left;
    	}
    	a[pivot] = key;
    	return pivot;
    }
    3.前后指针法
    基本思想:

    选择最左值的下标为基准值下标,并设定指向前后位置的两个下标 cur , prev 。使 prev 指向基准值的位置,cur 指向基准值的前一个位置。当 cur <= right,也就是 cur 指向的位置小于等于右区间的位置时,从 cur 开始找比基准值小的值,并将其与 prev 所在位置的前一个交换。当 cur 跳出右区间时,将基准值与 prev 所指向的值交换。

    动图演示:

    七大经典排序算法图解

    代码实现: 
    //前后指针法 ——更推荐
    int Partion(int* a, int left, int right)
    {
    	int keyi = left;
    	int cur = left + 1;
    	int prev = left;
    	while (cur <= right)
    	{
    		//cur找小,把小的换到左边
    		if (a[cur] < a[keyi])
    		{
                ++prev;
    			Swap(&a[cur], &a[prev]);
    		}
    		++cur;
    	}
    	Swap(&a[prev], &a[keyi]);
    	return prev;
    }

    小结:

    hoare版本与挖坑法都需要注意,不管是从右开始找还是从左开始找,始终都要注意左下标要小于右下标,若没有此限定条件,当从任一方向开始找值时,一旦没有找到我们所预想的值,就会导致越界情况产生。

    而前后指针法是从一个方向开始,遍历搜索一次待排序列,只需设定一次限定条件。

    故这里更推荐使用前后指针法来实现快速排序。

    Partion函数的优化

    由于每次是以基准值为准,将待排序列分成左右两个子序列,若每次能保证选到的基准值的正确位置在待排序列的中间部分,则每次分序列时,都能大致将待排序列分成均衡的两部分,从而将排序次数减少。

    这里使用到三数取中的方法:

    再排序前,先将最左值、中间值与最右值进行比较,选出三个数中的中间值,并将其与最左值交换,这样每次以最左值为基准值时,都能选到一个大致在中间部分的数。

    代码:
    //三数取中
    int GetMidIndex(int* a, int left, int right)
    {
    	int mid = (left + right) / 2;
    	if (a[left] > a[mid])
    	{
    		if (a[mid] > a[right])
    			return mid;
    		else if (a[left] < a[right])
    			return left;
    		else
    			return right;
    	}
    	else
    	{
    		if (a[mid] < a[right])
    			return mid;
    		else if (a[left] > a[right])
    			return left;
    		else
    			return right;
    	}
    }

    快速排序代码实现

    //三数取中
    int GetMidIndex(int* a, int left, int right)
    {
    	//int mid = (left + right) / 2;
    	int mid = left + ((right - left) >> 1);
    	if (a[left] > a[mid])
    	{
    		if (a[mid] > a[right])
    			return mid;
    		else if (a[left] < a[right])
    			return left;
    		else
    			return right;
    	}
    	else
    	{
    		if (a[mid] < a[right])
    			return mid;
    		else if (a[left] > a[right])
    			return left;
    		else
    			return right;
    	}
    }
     
    void Swap(int* px, int* py)
    {
    	int tmp = *px;
    	*px = *py;
    	*py = tmp;
    }
     
    //前后指针法
    int Partion(int* a, int left, int right)
    {
    	int midi = GetMidIndex(a, left, right);
    	Swap(&a[midi], &a[left]);
     
    	int keyi = left;
    	int cur = left + 1;
    	int prev = left;
    	while (cur <= right)
    	{
    		//cur找小,把小的换到左边
    		if (a[cur] < a[keyi] && ++prev != cur)
    		{
    			Swap(&a[cur], &a[prev]);
    		}
    		++cur;
    	}
    	Swap(&a[prev], &a[keyi]);
    	return prev;
    }
     
    void QuickSort(int* a, int left, int right)
    {
    	if (left >= right)
    		return;
     
    	int keyi = Partion3(a, left, right);
     
    	QuickSort(a, left, keyi - 1);
    	QuickSort(a, keyi + 1, right);
    }

    归并排序

    ⑦归并排序

    基本思想

    归并排序是将待排序列先分解至单个子序列,再将已有序的子序列合并一个临时数组中,得到完全有序的序列后再拷贝回原数组。即先使左右子序列有序,再将其归并为一个完整的有序序列。

    七大经典排序算法图解

    动图演示

    七大经典排序算法图解

    代码实现

    void _MergeSort(int* a, int left, int right, int* tmp)
    {
    	if (left >= right)
    		return;
    	int mid = left + ((right - left) >> 1);
    	_MergeSort(a, left, mid, tmp);
    	_MergeSort(a, mid + 1, right, tmp);
     
    	//归并
    	int begin1 = left, end1 = mid;
    	int begin2 = mid + 1, end2 = right;
    	int i = left;
    	while (begin1 <= end1 && begin2 <= end2)
    	{
    		if (a[begin1] <= a[begin2])
    		{
    			tmp[i++] = a[begin1++];
    		}
    		else
    		{
    			tmp[i++] = a[begin2++];
    		}
    	}
    	while (begin1 <= end1)
    	{
    		tmp[i++] = a[begin1++];
    	}
    	while (begin2 <= end2)
    	{
    		tmp[i++] = a[begin2++];
    	}
     
    	//把排序后的元素拷贝回原来的数组
    	for (int j = left; j <= right; ++j)
    	{
    		a[j] = tmp[j];
    	}
    }
     
    void MergeSort(int* a, int n)
    {
    	int* tmp = (int*)malloc(sizeof(int) * n);
    	if (tmp == NULL)
    	{
    		printf("malloc fail\n");
    		exit(-1);
    	}
     
    	_MergeSort(a, 0, n - 1, tmp);
     
    	free(tmp);
    	tmp = NULL;
    }

    排序算法复杂度及稳定性分析

    七大经典排序算法图解

    以上所述是小编给大家介绍的七大经典排序算法图解,希望对大家有所帮助。在此也非常感谢大家对网站的支持!

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。